Beyond the scope of Manifold Learning: the importance of the Data Foliation to understand classifiers and datasets.

Manifold Learning via Foliations and Knowledge Transfer

Eliot TRON. Rita FIORESI

1 Modeling

• A ReLU Neural Network (i.e. $\sigma = \mathrm{ReLU}$)

$$N_{\theta} : \mathbb{R}^{d} \longrightarrow \Delta^{C-1} := \left\{ p \in \mathbb{R}^{C} \mid \sum_{i=1}^{C} p_{i} = 1, \ p_{i} > 0 \right\}$$
$$x \longmapsto \operatorname{SoftMax} \circ L_{(W_{N}, b_{N})} \circ \sigma \circ \cdots \circ \sigma \circ L_{(W_{1}, b_{1})}(x)$$

- associated with the probability distribution $p_{\theta}(y \mid x, \theta) = (N_{\theta}(x))_{\theta}$
- equipped with the Data Information Matrix (DIM):

$$D(x,\theta) := \mathbb{E}_{y \sim p} [\nabla_x \log p(y|x,\theta) \cdot (\nabla_x \log p(y|x,\theta))^T].$$

2 Manifold Learning

Manifold Hypothesis:

"The manifold hypothesis posits that many high-dimensional data sets that occur in the real world actually lie along a low-dimensional latent manifold ${\cal M}$ inside that high-dimensional space." – Wikipedia

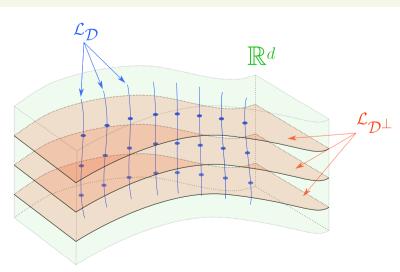
The goal of *Manifold Learning* is to learn \mathcal{M} or any meaningful geometric structure correlated to the sampled data points that are given to us.

3 Singular Foliations

Definition 3.1. We define a distribution \mathcal{D} from the columns of the DIM as such: $\mathbb{R}^d \ni x \mapsto \mathcal{D}_x := \operatorname{span}\{\nabla_x p_i(y|x,w), i=1,\dots c\}$. In the case of a ReLU network, this distribution is involutive on the points where it is well-defined.

Theorem 3.1. Consider the distribution \mathcal{D} for a ReLU Neural Network. Then, its singular points and non-smooth points are a closed null subset of \mathbb{R}^d contained in the union of hypersurfaces.

Corollary 3.1.1. Frobenius theorem gives the existence of a data foliation associated to \mathcal{D} almost everywhere on \mathbb{R}^d .



4 Results

Remark. The data foliation is spanned by the columns of the DIM. Therefore, the eigenvalues of $D(x,\theta)$ give great information on the nature of the leaf at x (e.g. its dimension).

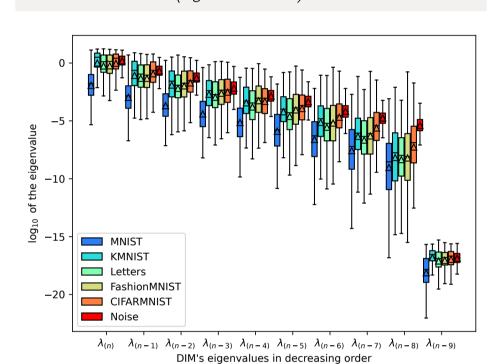


Figure 1: DIM eigenvalues sorted by decreasing order evaluated on 250 points for each dataset.

Interpretation: The DIM, and thus the Data Foliation, is correlated with the dataset N_{θ} was trained on (lower eigenvalues on average).

Knowledge Transfer

We train N_{θ} on the MNIST dataset (pictures of digits 0 to 9), then freeze the weights $W_1, b_1, \ldots, W_{N-1}, b_{N-1}$ and retrain only W_N, b_N on a new dataset.

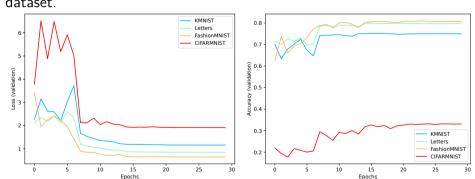


Figure 2: Loss and accuracy after transfer learning starting from the weights of a ReLU network trained on MNIST (98% of accuracy) and retraining only the last linear layer.

Interpretation: The final accuracy can be correlated with the median of the lowest non-zero eigenvalue $(\lambda_{(n-8)})$. The lower this is, the higher the accuracy. Thus, the rank of the DIM seems to correlate with the similarity between the data sets.

Extra figures

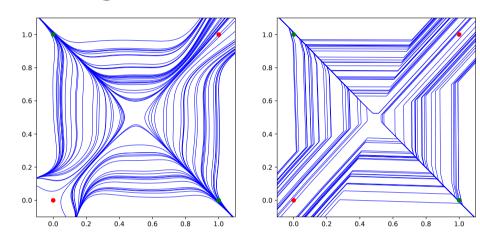


Figure 3: The Data Foliation defined by the distribution \mathcal{D} for the Xor problem (left: GeLU, right: ReLU).

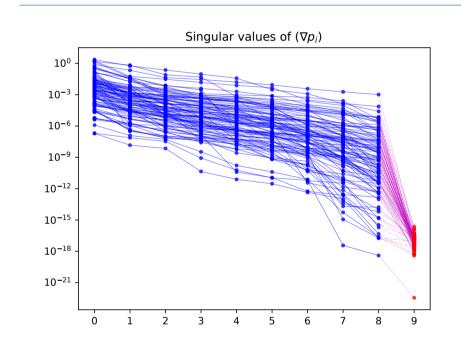


Figure 4: Singular values of $(\nabla p_i)_i$ ranked from highest to lowest, on 100 data points (MNIST). Each line corresponds to one picture.

Table 1: Parameters for Knowledge Transfer (logarithmic scale)

Dataset	Highest evalue	Lowest evalue	Val. Acc.
MNIST	-1.78	-8.58	98%
KMNIST	0.49	-7.75	75%
Letters	0.11	-7.99	80%
Fashion-MNIST	0.14	-8.08	81%
CIFARMNIST	0.41	-6.90	33%
Noise	0.24	-5.36	NA

Table 2: Involutivity of the distribution ${\cal D}$

Non linearity	$dim\ \mathcal{D}_x$	dim $\mathcal{V}_x^\mathcal{D}$
ReLU	9	9
GeLU	9	44.84
Sigmoid	9	45

 $\begin{aligned} \mathcal{V}_x^D &:= \operatorname{Span} \left\{ X, \ [Y, Z] \mid X, Y, Z \in \mathcal{D}_x^3 \right\} \\ &= \operatorname{Span} \left\{ \nabla_x \log p_i, \left[\nabla_x \log p_j, \nabla_x \log p_k \right] \mid i, j, k = 1, \dots, c \right\}. \end{aligned}$

