Beyond the scope of Manifold Learning:

the importance of the Data Foliation to

understand classifiers and datasets.
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1 Modeling 4 Results

= A ReLU Neural Network (i.e. 0 = ReLU) Remark. The data foliation is spanned by the columns of the DIM.
Therefore, the eigenvalues of D(x,0) give great information on the
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The goal of Manifold Learning is to learn M or any meaningful geometric DIM's eigenvalues in decreasing order 1016 ]
structure correlated to the sampled data points that are given to us. _ ) )
Figure 1. DIM eigenvalues sorted by decreasing order evaluated on 250 10721 4
points for each dataset. .
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3 Singular Foliations
Interpretation: The DIM, and thus the Data Foliation, is correlated
Definition 3.1. We define a distribution D from the columns of the with the dataset Ny was trained on (Iower eigenvalues on average)' Figure 4: Singular values of (sz)Z ranked from highest to lowest, on
DIM as such: R? > z — D, := span{V.p;(y|z,w), i = 1,...c}. 100 data points (MNIST). Each line corresponds to one picture.

In the case of a RelLU network, this distribution is involutive on the Knowledge Transfer

points where it is well-defined.
We train Ny on the MNIST dataset (pictures of digits 0 to 9), then freeze

Table 1: Parameters for Knowledge Transfer (logarithmic scale)

Theorem 3.1. Consider the distribution D for a ReLU Neural Net- the weights W1, by, ..., W—1,by-1 and retrain only Wy, by on a new
work. Then, its singular points and non-smooth points are a closed dataset. — Dataset Highest evalue  Lowest evalue  Val. Acc.
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null subset of R? contained in the union of hypersurfaces. s FoshionbIST MNIST -1.78 -8.58 98%
—— CIFARMNIST
, N \/—V KMNIST 0.49 -7.75 75%
. . . - gos Letters 0.11 -7.99 80%
Corollary 3.1.1. Frobenius theorem gives the existence of a data fo- L . Fashion-MNIST 0.14 -8.08 81%
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Figure 2: Loss and accuracy after transfer learning starting from the Table 2: Involutivity of the distribution D
weights of a ReLU network trained on MNIST (98% of accuracy) and
retraining only the last linear layer. Non linearity dim D, _dim VP

ReLU 9 9

GeLU 9 44.84
Interpretation: The final accuracy can be correlated with the median Sigmoid 9 45

of the lowest non-zero eigenvalue (\(,_s)). The lower this is, the higher

the accuracy. Thus, the rank of the DIM seems to correlate with the

. VD .= Span{ X, [V, 2] | X,Y,Z € D
similarity between the data sets. ¢ { )
= Span{Vg logp;, [Va logpj, Vo logpy] | 4,5,k =1,...,c}.
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