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Introduction



What is the goal of this paper?

• Using Equivariant Neural Networks (ENN) for solving Partial
Differential Equations.

• Exploiting the underlying symmetry groups to strengthen the
approximation.

• Generalizing ENN to tackle vector valued function with any given
symmetry group.

• Building symmetry preserving Finite Difference methods.

• Illustrating our method on the 2D heat equation.
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State of the Art

Neural Networks applied to PDEs
Multiple approaches [Rai, SS, LJK, LMMK, WKM+], pretty efficient.

Symmetry in Neural Networks
Recent works (since 2016) [CW, CGW, CWKW, FWW, FSIW, WC],
highly promising but limited results for our task.

Only one applied to PDEs:
Rui Wang, Robin Walters, and Rose Yu. Incorporating Symmetry Into
Deep Dynamics Models for Improved Generalization [WWY]. However,
only special cases.
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PDEs and Symmetries



In what space are we working?

• A smooth manifold X (coordinate space).

• A vector space V (output space).
• Smooth functions U = C∞ (X ,V ).
• The Jet space J(n) = X × U × . . .× U

X
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What are we trying to solve?

Definition (PDE System)

(E ) :

{
∆
(
t, x , u(n)

)
= 0 ∀t, x ∈ R+ ×X

u(t, x) = ub(t, x) ∀(t, x) ∈ B
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What are symmetries?

Definition (Symmetry Group)
A Lie group G is the symmetry group of a PDEs system when if f is a
solution, then its transform fg by the group action is also a solution.

Definition (Differential Invariant)
The algebraic invariants IG of the prolonged group action pr(n) G are
called the differential invariants of order n of the group G . A
complete set of independent differential invariants of order n will be
denoted by ∂ϕG

u,n =
{
∂ϕG ,1

u,n , . . . , ∂ϕ
G ,k
u,n

}
.

5



What are symmetries?

Definition (Symmetry Group)
A Lie group G is the symmetry group of a PDEs system when if f is a
solution, then its transform fg by the group action is also a solution.

Definition (Differential Invariant)
The algebraic invariants IG of the prolonged group action pr(n) G are
called the differential invariants of order n of the group G . A
complete set of independent differential invariants of order n will be
denoted by ∂ϕG

u,n =
{
∂ϕG ,1

u,n , . . . , ∂ϕ
G ,k
u,n

}
.

5
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Equivariant Neural Networks



What is the operation behind G-CNN?

Definition (Group Convolution)

Let G be a compact Group and V1, V2 two vector spaces. Let
K : G → L (V1,V2) be a kernel, f : G → V1 be a feature function,
and µ the Haar measure on G . We define the group convolution for
any s ∈ G by

(K ∗ f )(s) =
∫

G
K
(
r−1s

)
f (r)dµ(r).
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Why is it interesting?

Proposition
If the actions of G on V G

1 and V G
2 has regular representations, then

the group convolution defined before is G-equivariant.
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Why is it not enough?

g

Regular representation ρ(g) = 1 on scalars.
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Why is it not enough?

g

Non-regular representation on vectors.
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A New Convolution

Definition (Representative Group Convolution)

Let G be a compact Group and V1, V2 two vector spaces. Let
K : G → L (V1,V2) be a kernel, f : G → V1 be a feature function,
and µ the Haar measure on G . If ρ1 : G → L (V1) and
ρ2 : G → L (V2) are the linear representations of the action of G on
V1 and V2 respectively, we define the representative group
convolution for any s ∈ G by

(K ⊛ f )(s) =
∫

G
ρ2 (r)K

(
r−1s

)
ρ1

(
r−1) f (r)dµ(r) (1)
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Finally enough

Theorem

If G acts on V G by

ρ(g)f
(
g−1r

)
∀g , r ∈ G and f : G → V ,

then the representative group convolution is G-equivariant.
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Equivariant Neural Network

G -CNN

input layer: N 0 = f ∈ V G
0 ,

convolution layers: N ℓ = K ℓ ⊛N ℓ−1 ∈ V G
ℓ ,

with ρℓ−1, ρℓ, for 1 ≤ ℓ ≤ L.

Remark
One can use non-equivariant pointwise function between layers as
long as ρℓ = Id .
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Solving of PDEs with ENN



What Neural Network to use for PDEs?

Loss

L (θ, T ) = wf Lf (θ, Tf ) + wbLb (θ, Tb) (2)

with

Lf (θ, Tf ) =
1

|Tf |
∑
x∈Tf

∥∥∥∆(
t, x , û(n)

)∥∥∥2

2
(3)

Lb (θ, Tb) =
1

|Tb|
∑
x∈Tb

∥B (ûθ, x)∥2
2 (4)
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How can we simplify the problem with differential invariants?

Problem
kt∑

i=1

ai∂
i
tu = ∆

(
t, x , u(n)

x

)
(5)

Theorem

∆
(
t, x , u(n)

x

)
= F

(
∂ϕG ,1

u,n , . . . , ∂ϕ
G ,k
u,n

)
(6)

known unknown
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How do we use the ENNs now?

Approximation

NG

((
f (i)(ℓ)

)nx

ℓ=1

)j
≈ ∂ϕ

G ,(i,j)
f = ∂ϕG

f (t
(i), x (j)) (7)

New problem
kt∑

i=1

ai∂
i
tu ≈ F

(
N 1

G

((
u(i,ℓ)

)nx

ℓ=1

)j
, ...,N k

G

((
u(i,ℓ)

)nx

ℓ=1

)j
)

(8)
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Numerical Experiments



How close can we get with SE(2) differential invariants?

Figure 1: The SE(2) differential invariant u2
x + u2

y computed for the function u
depicted in Frame 5 with an SE(2)-CNN (left) and its theoretical value (right)
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How close can we get with SE(2) differential invariants?

Figure 1: Comparison of the theoretical heat profile of the 2D heat equation
with a top 100◦C boundary condition with those obtained through simulation
with two symmetry preserving FD schemes by leveraging on R2 (middle) and
SE(2) (right) equivariant neural networks.
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Conclusion and Further Work



Contributions

• Use of G-CNN to generalize the PINN architecture to encode generic
symmetries ;

• Use of ENN to approximate differential invariants of a given
symmetry group ;

• Build of symmetry preserving Finite Difference methods.

To go further

• Perfom proper benchmarking between the two approaches and other
conventional numerical schemes for PDEs integration ;

• Test on more complex PDEs with richer symmetry groups (e.g.
Maxwell).
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Questions?



Taco Cohen, Mario Geiger, and Maurice Weiler.
A General Theory of Equivariant CNNs on Homogeneous
Spaces.

Taco S. Cohen and Max Welling.
Steerable CNNs.

Taco S Cohen, Maurice Weiler, Berkay Kicanaoglu, and Max
Welling.
Gauge Equivariant Convolutional Networks and the Icosahedral
CNN.

Marc Finzi, Samuel Stanton, Pavel Izmailov, and Andrew Gordon
Wilson.
Generalizing Convolutional Neural Networks for Equivariance
to Lie Groups on Arbitrary Continuous Data.

Marc Finzi, Max Welling, and Andrew Gordon Wilson.
A Practical Method for Constructing Equivariant Multilayer
Perceptrons for Arbitrary Matrix Groups.



Lu Lu, Pengzhan Jin, and George Em Karniadakis.
DeepONet: Learning nonlinear operators for identifying
differential equations based on the universal approximation
theorem of operators.

Lu Lu, Xuhui Meng, Zhiping Mao, and George E. Karniadakis.
DeepXDE: A deep learning library for solving differential
equations.

Maziar Raissi.
Deep Hidden Physics Models: Deep Learning of Nonlinear
Partial Differential Equations.

Justin Sirignano and Konstantinos Spiliopoulos.
DGM: A deep learning algorithm for solving partial differential
equations.
375:1339–1364.

Maurice Weiler and Gabriele Cesa.
General $E(2)$-Equivariant Steerable CNNs.



Rui Wang, Karthik Kashinath, Mustafa Mustafa, Adrian Albert, and
Rose Yu.
Towards Physics-informed Deep Learning for Turbulent Flow
Prediction.

Rui Wang, Robin Walters, and Rose Yu.
Incorporating Symmetry Into Deep Dynamics Models for
Improved Generalization.
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